The Synthesis, Structure, and Reactivity of Phenyl Tris(3-tert-butylpyrazolyl)borato Iron Methyl, [PhTp^{Bu^t}]FeMe: Isolation of a Four-Coordinate Monovalent Iron Carbonyl Complex, [PhTp^{But}]FeCO

Jennifer L. Kisko, Tony Hascall, and Gerard Parkin*

Department of Chemistry Columbia University New York. New York 10027

Received July 3, 1998

The organometallic chemistry of iron is dominated by cyclopentadienyl derivatives which satisfy the 18-electron rule.¹ As frequently cited analogues of cyclopentadienyl, tris(pyrazolyl)hydroborato ligands² form a variety of complexes that have counterparts in the classic cyclopentadienyl-iron system; for example, [Tp]₂Fe is an analogue of ferrocene, Cp₂Fe, while [Tp]-Fe(CO)₂X derivatives are analogues of CpFe(CO)₂X. In this paper, we demonstrate that the sterically demanding phenyl tris-(3-tert-butylpyrazolyl)borato ligand enables isolation of iron complexes which have no counterparts in the cyclopentadienyliron system, such as low-electron-count, four-coordinate methyl and carbonyl derivatives.

Trofimenko's tris(pyrazolyl)hydroborato ligand system, [Tp^{RR'}], has been used extensively in synthesizing and studying the reactivity of four-coordinate alkyl derivatives of the pre- and posttransition metals, e.g., $[Tp^{RR'}]MR$ (M = Be, Mg, Zn, Cd).^{2b} By comparison, however, [Tp^{RR'}] ligands have not yet been widely employed for studying four-coordinate alkyl complexes of the transition metals. For this reason, we have started to explore the organometallic chemistry of iron supported by such ligands. In this regard, [Tp^{But}]FeCl, the first four-coordinate tris(pyrazolyl)hydroborato iron complex,³ which we previously reported, has the potential for being a useful precursor for the synthesis of organometallic derivatives. The possibility of ligand degradation via reaction at the B-H bond, however, prompted us to investigate the modified ligand [PhTp^{Bu^t}]⁴ in which the hydride substituent is replaced by phenyl. Indeed, this modified ligand allows facile isolation of the iron methyl complex [PhTp^{But}]FeMe via reaction of [PhTp^{But}]FeCl with either Me₂Mg or MeLi (Scheme 1). [PhTp^{Bu^t}]FeMe is a colorless paramagnetic complex, the methyl group of which is characterized by a signal at 1453 ppm in the ²H NMR spectrum of the d_3 -isotopomer at room temperature.⁵ The molecular structure of [PhTp^{But}]FeMe has been determined by X-ray diffraction (Figure 1), and the Fe-CH₃ bond length of 2.079(3) Å is comparable to the mean value of 2.046 Å for structurally characterized iron methyl complexes in the Cambridge Structural Database.⁶ As a 14-electron four-coordinate complex belonging to the classification $[FeL_2X_2]$,⁷ $[PhTp^{Bu^t}]$ FeMe provides a marked contrast with other structurally characterized iron methyl

(1) See, for example: Kerber, R. C. In *Comprehensive Organometallic Chemistry II*.; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: New York, 1995; Volume 7, Chapter 2.

(2) For recent reviews, see: (a) Trofimenko, S. Chem. Rev. 1993, 93, 943–980. (b) Parkin, G. Adv. Inorg. Chem. 1995, 42, 291–393.
(3) Gorrell, I. B.; Parkin, G. Inorg. Chem. 1990, 29, 2452–2456.

(4) Li[PhTp^{Bu}] FeCl is obtained by metathesis with FeCl₂.

(5) The ²H NMR chemical shift of the CD₃ group is highly temperaturedependent, moving to a value of 1213 ppm at 70 °C. For other uses of ²H NMR in characterizing paramagnetic iron complexes, see: Stokes, S. L.; Davis, W. M.; Odom, A. L.; Cummins, C. C. Organometallics 1996, 15, 4521-4530.

(6) CSD Version 5.14. 3D Search and Research Using the Cambridge Structural Database, Allen, F. H.; Kennard, O. Chemical Design Automation News 1993, Vol. 8 (1), pp 1 and 31–37.

(7) For the use of this classification system for covalent compounds, see: Green, M. L. H. J. Organomet. Chem. 1995, 500, 127-148.

Figure 1. Molecular structures of [PhTp^{Bu^t}]FeCH₃ (left) and [PhTp^{Bu^t}]-FeCO (right).

Scheme 1

complexes which typically belong to the 18-electron class [FeL₄X₂], as exemplified by $[Cp^{R}]Fe(CO)(L)Me^{1}$ and *cis*-(dmpm)₂-FeMe₂.⁸ The closely related allyl and benzyl complexes [Tp^{P+2}]FeR $(R = CH_2CHCH_2, CH_2-p-Tol)^{9,10}$ have also been recently reported.11

The iron methyl group is highly reactive toward a variety of substrates, as illustrated in Scheme 1. For example, both I₂ (room temperature) and MeI (120 °C) react with [PhTp^{But}]FeMe to yield the iodide complex [PhTp^{But}]FeI. Much more interesting, however, is the reaction of [PhTpBu']FeMe with CO (120 °C) which yields the novel 15-electron four-coordinate monovalent iron carbonyl complex [PhTp^{Bu^t}]FeCO.¹² The latter complex has been structurally determined by X-ray diffraction (Figure 1) and is

(9) Akita, M.; Shirasawa, N.; Hikichi, S.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1998, 973-974.

(10) 14-electron iron alkyls of the class [FeL₂X₂] also include the dialkyls (dippe)FeR₂ ($R = CH_2SiMe_3$, CH_2CMe_3 , CH_2CMe_2Ph , CH_2Ph , CH_2Ph , CH_2Tol),^{10a} and a variety of heteroatom substituted metallacycle derivatives.^{10bc} (a) Hermes, A. R.; Girolami, G. S. Organometallics **1987**, 6, 763–768. (b) Leung, W.-P.; Lee, H. K.; Weng, L.-H.; Luo, B.-S.; Zhou, Z.-Y.; Mak, T. C. W. Organometallics **1996**, *15*, 1785–1792. (c) Hursthouse, M. B.; Izod, K. J.; Motevalli, M.; Thornton, P. Polyhedron **1996**, *15*, 133–145.

(11) Other examples of four-coordinate alkyl complexes of the d- and f-block elements supported by tris(pyrazolyl)hydroborato ligation include [Tp^{Bu,Me}]CrR (R = Et, Ph, CH₂SiMe₃)^{11a} and [Tp^{Bu,Me}]YbCH(SiMe₃)₂.^{11b} (a) Kersten, J. L.; Kucharczyk, R. R.; Yap, G. P. A.; Rheingold, A. L.; Theopold, K. H. Chem. Eur. J. **1997**, *3*, 1668–1674. (b) Hasinoff, L.; Takats, J.; Zhang, A. H.; Rogers, R. D. J. Am. Chem. Soc. **1994**, *116*, 8833–8834.

(12) Related tris(pyrazoly])hydroborato cobalt carbonyl complexes, $[Tp^{Np}]$ -CoCO, $[Tp^{Bu',Me}]CoCO$, and $\{[Tp^{Bu',Me}]Co(\mu$ -CO) $\}_2Mg(THF)_4$, have been reported. See: Detrich, J. L.; Konecny, R.; Vetter, W. M.; Doren, D.; Rheingold, A. L.; Theopold, K. H. J. Am. Chem. Soc. **1996**, 118, 1703–

⁽⁸⁾ Wong, W. K.; Chiu, K. W.; Wilkinson, G.; Howes, A. J.; Motevalli, M.; Hursthouse, M. B. Polyhedron 1985, 4, 603-614.

characterized by an Fe-CO bond length of 1.789(3) Å¹³ and a ν (CO) stretching frequency of 1907 cm⁻¹ [ν (¹³CO) = 1863 cm⁻¹]. [PhTp^{But}]FeCO is of interest not only because its cyclopentadienyl counterpart [CpFeCO] is unstable and has not been isolated,¹⁴ but also because analogous complexes have not yet been isolated using other [Tp^{RR'}] ligands; specifically, only 18-electron sixcoordinate iron carbonyl complexes, illustrated by [Tp]Fe(CO)2- $[C(O)Me]^{15}$ $[Tp]Fe(CO)[\eta^2 - CF_2C(O)N^{Pr_2}]^{16}$ and $[Tp^{Pr_2}]Fe(CO)_2$ -[C(O)CH₂-p-Tol],⁹ have previously been structurally authenticated.¹⁷ Moreover, [PhTp^{But}]FeCO is of interest since Fe(I) is a most uncommon valence state for iron.¹⁸ Undoubtedly, the ability to isolate the four-coordinate 15-electron carbonyl complex [PhTp^{Bu'}]-FeCO is a consequence of the steric protection provided by the bulky tert-butyl substituents.19

In addition to the above reactions in which the [PhTp^{Bu^t}] ligand retains tridentate coordination, there is also a class of reactions which is characterized by the formation of products in which the [PhTp^{But}] ligand adopts a bidentate coordination mode. For example, rather than yield a terminal hydroxide derivative, [PhTp^{Bu^t}]FeMe reacts with H₂O to give a dinuclear complex $\{[\eta^2-PhTp^{Bu^i}]Fe(\mu-OH)\}_2$ in which one of the pyrazolyl donors of each ligand is displaced as a result of the hydroxide bridges. The molecular structure of $\{[\eta^2-PhTp^{Bu^t}]Fe(\mu-OH)\}_2^{20}$ is of interest since it is unlike those of other tris(pyrazolyl)borato iron hydroxide complexes, namely the four-coordinate terminal hy-

(16) Anderson, S.; Hill, A. F.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc., Chem. Commun. **1993**, 266–267.

(17) [Tp]Fe(CO)(PMe₃)[C(O)Me] has also been reported, but not structurally characterized. See: Bellachioma, G.; Cardaci, G.; Gramlich, V.; Mac-chioni, A., Pieroni, F.; Venanzi, L. M. J. Chem. Soc., Dalton Trans. 1998, 947-951.

(18) Several 17-electron monovalent carbonyl complexes, e.g., [(R₂C)_xFe- $(CO)_{y}(PR'_{3})_{z}^{+}(x + y + z = 5; R_{2}C = [MeNCH_{2}CH_{2}N(Me)]C), [C_{6}H_{4}-(AsMe_{2})_{z}]Fe(CO)_{2}I, and [Fe(CO)_{3}(PR_{3})_{2}]^{+} have been described in the literature,$ but none have been structurally authenticated by X-ray diffraction. See: Lappert, M. F.; MacQuitty, J. J.; Pye, P. L. J. Chem. Soc., Dalton Trans. **1981**, 1583–1592 and references therein.

(19) Four-coordinate iron carbonyl complexes typically adopt 18-electron (i) Four-coordinate non-coordinate non-configurations, e.g., $(Ph_3P)Fe(CO)(NO)_2$, $[Fe(CO)_3(NO)]^-$, and $[Fe(CO)_4]^{2^-}$. See, for example: Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. *J. Organomet. Chem.* **1974**, 67, 413–422. (20) Selected metrical data for $\{[\eta^2-PhTp^{Bu'}]Fe(\mu-OH)\}_2$: d(Fe-OH) = 1.978(4) Å and 1.974(10) Å; $d(Fe\cdots Fe) = 3.075$ Å; Fe-O-Fe' 102.2(3)°;

O-Fe-O 77.8(3)°.

droxide complex $[Tp^{Bu^t,Pr^i}]FeOH^{21}$ and the dinuclear fivecoordinate bridging hydroxide complex ${[Tp^{Pri_2}]Fe(\mu-OH)}_2^{22}$ which retain tridentate coordination of the [Tp^{Pri}₂] ligand. Correspondingly, the average Fe–OH bond length in {[η^2 -PhTp^{Bu^t}]- $Fe(\mu-OH)$ ₂ [1.98(1) Å] is intermediate between those in [Tp^{But,Pri}]-FeOH [1.830(8) Å]²¹ and {[Tp^{Pri₂}]Fe(μ -OH)}₂ [2.03(1) Å].²²

A further example of a reaction of [PhTpBut]FeMe which involves a tridentate-to-bidentate conversion of the [PhTp^{Bu^t}] ligand is that with NO to give the 17-electron dinitrosyl complex $[\eta^2$ -PhTp^{Bu'}]Fe(NO)₂ (Scheme 1).²³ The molecular structure of $[\eta^2$ -PhTp^{But}]Fe(NO)₂ has been determined by X-ray diffraction,²⁴ and the Fe-NO bond lengths of 1.688(3) Å and 1.694(3) Å are comparable to the mean value of 1.663 Å for iron nitrosyl complexes listed in the Cambridge Structural Database.⁶ [η^2 -PhTp^{Bu'} |Fe(NO)₂ is also characterized by ν (NO) absorptions at 1811 and 1728 cm⁻¹ in the IR spectrum.

In summary, the four-coordinate iron methyl complex [PhTp^{Bu^t}]-FeMe, synthesized by reaction of [PhTp^{Bu^t}]FeCl with Me₂Mg, is a versatile precursor to an array of tris(pyrazolyl)borato derivatives, including the novel monovalent iron carbonyl complex [PhTp^{Bu^t}]FeCO.

Acknowledgment. We thank the U.S. Department of Energy, Office of Basic Energy Sciences (No. DE-FG02-93ER14339) for support of this research. G.P. is the recipient of a Presidential Faculty Fellowship Award (1992-1997).

Supporting Information Available: Experimental and crystallographic data for all new complexes (53 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA982323P

(21) Hikichi, S.; Ogihara, T.; Fujisawa, K.; Kitajima, N.; Akita, M.; Moro-oka Y. *Inorg. Chem.* **1997**, *36*, 4539–4547. (22) Kitajima, N.; Tamura, N.; Tanaka, M.; Moro-oka, Y. *Inorg. Chem.* **1992**, *31*, 3342–3343.

(23) Four coordinate 17-electron iron nitrosyl compounds of the class [Fe- $(NO)_2LX$] are relatively common, e.g., $(Ph_3P)XFe(NO)_2$ (X = Cl, Br, I). See, for example: Richter-Addo, G. B.; Legzdins, P. Metal Nitrosyls; Oxford University Press: New York, 1992

University Press: New York, 1992. (24) [PhTp^{Bu}]FeMe is monoclinic, $P_{21/n}$ (No. 14), a = 10.4777(5) Å, b = 17.4872(8) Å, c = 16.1405(7) Å, $\beta = 93.293(1)^{\circ}$, V = 2952.5(2) Å³, Z = 4, and T = 203 K. [PhTp^{Bu}]FeCO is monoclinic, $P_{21/n}$ (No. 14), a = 9.9106(6) Å, b = 17.982(1) Å, c = 16.348(1) Å, $\beta = 92.956(1)^{\circ}$, V = 2905.5(3) Å³, Z = 4, and T = 203 K. [PhTp^{Bu}]FeCV(T_{48}) is triclinic, P1 (No. 2), a = 11.4672(6) Å, b = 15.3337(8) Å, c = 21.457(1) Å, $\alpha = 71.618(1)$, $\beta = 82.672(1)^{\circ}$, $\gamma = 82.957(1)^{\circ}$, V = 3537.4(3) Å³, Z = 4, and T = 203 K. [PhTp^{Bu}]FeI is monoclinic, $P_{21/n}$ (No. 14), a = 9.8183(4) Å, b = 18.8196(8) Å, c = 15.8495(7) Å, $\beta = 91.542(1)^{\circ}$, V = 2927.6(2) Å³, Z = 4, and T = 203 K. [p^2 -PhTp^{Bu}]Fe(NO₂ is monoclinic, $P_{21/n}$ (No. 14), a = 10.6522(5) Å, b = 12.1150(5) Å, c = 24.059(1) Å, $\beta = 102.237(1)^{\circ}$, V = 3034.3(2) Å³, Z = 4, and T = 203 K. { p^2 -PhTp^{Bu}]Fe(NO₂) is monoclinic, $P_{21/n}$ (No. 14), a = 10.6522(5) Å, b = 12.1150(5) Å, c = 24.059(1) Å, $\beta = 102.237(1)^{\circ}$, V = 3034.3(2) Å³, Z = 4, and T = 203 K. { p^2 -PhTp^{Bu}]Fe(Fe(NO₁) + Fe(U-OH) (C-sH₁) is monoclinic, $P_{2/n}$ (No. 4, and T = 203 K. { $[\eta^2$ -PhTp^{Bu}]Fe(μ -OH)}·(CH)]·(CH) V = 3139.5(3) Å³, Z = 2, and T = 203 K.

⁽¹³⁾ For comparison, the mean Fe–CO bond length for complexes in the Cambridge Structural Database is 1.778 Å. See ref 6.

⁽¹⁴⁾ In this regard, photolysis of $[CpFe(CO)(\mu-CO)]_2$ in a 3-methylpentane matrix yields the transient dimer [CpFe(CO)]₂, which exists in a triplet form with terminal carbonyl ligands, and the more stable singlet with bridging carbonyl ligands. See: (a) Vitale, M.; Archer, M. E.; Bursten, B. E. J. Chem. Soc., Chem. Commun. 1998, 179–180. (b) Kvietok, F. A.; Bursten, B. E. J. Am. Chem. Soc. 1994, 116, 9807–9808.

⁽¹⁵⁾ Cotton, F. A.; Frenz, B. A.; Shaver, A. Inorg. Chim. Acta 1973, 7, 161 - 169